Products

  • 0
  • 0

Progress in the field of research on anode materials for lithium-ion batteries

The spread of the novel coronavirus is taking a direct hit on the operations of airlines in Asia. About 500,000 flights taking off and landing in mainland China have been canceled since January, according to aviation information company Cerium. Tourists and business trips have plummeted. On the booking website, there are a large number of air tickets for local routes with a price reduction of nearly 90% compared with the original price and only tens of yuan for a one-way trip.
In February, China's aviation industry recorded its largest single-month loss of 24.59 billion yuan, of which airlines lost 20.96 billion yuan.
Data from the Civil Aviation Administration of China showed that in February, the number of passengers traveling by air fell 84.5% year-on-year to 8.34 million.
The stagnation of the Asian aviation industry has brought volatility to Lithium-ion batteries.

Lithium-ion batteries have become hotspots in energy research due to their higher energy density, long service life, and smaller volume compared with lead-acid, nickel-cadmium, nickel-metal hydride, and other batteries, and no memory effect. One. The negative electrode material is one of the critical components of lithium-ion batteries. It acts as the acceptor of lithium ions and realizes the insertion and extraction of lithium ions during the charging and discharging process. Therefore, the quality of the negative electrode material directly affects the overall performance of the lithium-ion battery. Graphite and modified graphite are widely used as anode materials for commercial lithium-ion batteries. Still, their theoretical capacity is only 372mAh/g, which significantly restricts the development of high-energy power batteries. Group IV element (silicon, germanium, tin)-based anode materials have become a research hotspot for next-generation lithium-ion batteries due to their high theoretical capacities (3579mAh/g, 1600mAh/g, 994mAh/g, respectively). However, silicon, germanium, and tin-based anode materials have the problem of significant volume expansion during the charging and discharging process. Long-term charging and discharging will cause the pulverization of particles and the shedding of active materials, thus affecting the cycle stability of lithium-ion batteries.

1651115005808790.jpg

In recent years, the advanced lithium-ion battery team led by Han Weiqiang, a researcher at the Institute of New Energy Technology affiliated with the Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, has made a series of progress in high-capacity silicon, germanium, and tin-based anode materials. In terms of high-performance silicon-based anode materials, researchers have developed a low-cost, high-capacity, and high-stability porous silicon-based anode material technology. By carbon coating, the porous silicon, the performance of the silicon-based negative electrode material for lithium-ion batteries is further improved. The capacity retention rate of the silicon-carbon composite electrode material was 86.8% after 300 charge-discharge cycles. Related research has applied for Chinese invention patents (201410150747.5, 201410276413.2), and the research results were published in NanoEnergy (2015, 11, 490-499) in the form of Communication.

Based on the previous work, the team synthesized and prepared a series of new phase MSn5 (M=Fe, Co, Fe0.5Co0.5) alloy nano-anode materials using the wet chemical method of improving polyols. The synthesized FeSn5 alloy nanoparticles have a theoretical capacity of 929mAhg-1 when used as a negative electrode material for lithium-ion batteries, which is the material with the highest theoretical specific capacity among the reported M-Sn (M is an electrochemically inert metal) alloy. The researchers prepared a series of Fe0.5Co0.5Sn5 new phase alloy nanoparticles with a 30-50nm particle size range, which further expanded the Co-Fe-Sn phase diagram. Related achievements have applied for invention patents (2013104705134, 201310706760X, 2103715406A). At the same time, the charge-discharge mechanism was deeply discussed and explained by in-situ XAFS, in-situ XRD, and electrochemical test methods. The research on the electrochemical mechanism of this series of tin-based new phase alloy anode materials provides effective theoretical guidance for the team's subsequent development of high-performance tin-based anode materials. Relevant results were published in JournalofMaterialsChemistryA (2015, 3(13):7170-7178) and ACS Appl.Mater.Interfaces (2015,7,7912-7919).

The team has also made progress in the research and development of long-life titanium-based anode materials, applying for an invention patent (201310685139. X), and the relevant results were published in the Journal of Materials Chemistry (2014(2), 10599-10606).

High-quality lithium-ion batteries supplier

Luoyang Moon & Star New Energy Technology Co., LTD, founded on October 17, 2008, is a high-tech enterprise committed to developing, producing, processing, selling, and technical services of lithium-ion battery anode materials. After more than 10 years of development, the company has gradually developed into a diversified product structure with natural graphite, artificial graphite, composite graphite, intermediate phase, and other negative materials (silicon-carbon materials, etc.). The products are widely used in high-end lithium-ion digital power and energy storage batteries. If you are looking for Lithium battery anode material, click on the needed products and send us an inquiry:sales@graphite-corp.com.

 


Researchers at the Centre for Translational Atomic Materials at Swinburne University of Technology, Melbourne, Australia have developed a new graphene film that absorbs more than 90% of sunlight while eliminating most of the infrared thermal emission losses, a highly efficient A solar-heated metamaterial capable of rapidly heating to 83 degrees Celsius (181 degrees Fahrenheit) in an open environment with minimal heat loss. Proposed applications for the film include thermal energy harvesting and storage, solar thermal power generation, and seawater desalination.
Our company provides graphene Lithium-ion batteries, if you need to buy graphene and Lithium-ion batteries, please feel free to contact us.

Inquiry us

Our Latest Products

High Purity Iron powder Fe Powder CAS 7439-89-6, 99%

Russia's insistence on paying for Russian gas in rubles has rattled European countries: Greece held an emergency meeting of suppliers, the Dutch government would urge consumers to use less gas, and the French energy regulator told consumers not to pa…

High Purity Copper Powder Cu Powder CAS 7440-50-8, 99%

John Albanese, leader of the Australian Labor Party, was sworn in as Australia's new prime minister. After his victory, Albanese said he would "make a big change" in the country's climate policy. "We now have an opportunity to end the 'climate wars'…

High Purity Tin Sn Powder CAS 7440-31-5,99%

How serious are fertility problems today? People don't want to give birth,can't afford it, and can't give birth that has become the "three mountains". The problem of childbirth is related to the people's livelihood. Whether a country can prosper or n…